To identify the species responsible for these changes, the most abundant species were analysed separately (Tables 2 and 3). Some showed no changes in numbers during the study period or changed in a similar way at CG and CE, such as Little Egret (Egretta garzetta), Common Shelduck (Tadorna tadorna), Eurasian Wigeon (Anas penelope), Mallard (Anas plathyrhynchos), Common Pochard (Aythya ferina), Ringed Plover (Charadrius hiaticula), Sanderling (Calidris alba) and Little Stint (Calidris minuta). Another group of species showed marked and consistent differences between the salinas. This was the case of diving species, such as the Little Grebe (Tachybaptus ruficollis), Black-necked Grebe (Podiceps nigricollis), White-headed Duck (Oxyura leucocephala) and Common Coot, whose numbers remained stable before and after 1988 at CG, but showed a significant increase at CE (Tables 2 and 3). The opposite was found for species of wading birds and shorebirds, such as Greater Flamingo (Phoenicopterus ruber), Black-winged Stilt (Himantopus himantopus), Avocet (Recurvirostra avosetta), Kentish Plover (Charadrius alexandrinus), Curlew Sandpiper (Calidris ferruginea), Dunlin (Calidris alpina), Black-tailed Godwit (Limosa limosa) and Common Redshank (Tringa totanus), whose numbers remained nearly constant or increased at CG, but decreased or were stable at CE (Tables 2 and 3). A unique case was that of Northern Shoveler (Anas clypeata). Although its numbers increased significantly from one period to the other, it occurred at CG exclusively during summer and only at CE during the winter (Tables 2 and 3).

Table 3. Average abundance (± SD) during summer of the main waterbird species at Salinas de Cabo de Gata and Salinas de Cerrillos before and after 1988. Statistical differences (Mann-Whitney U test) between both intervals are also indicated: n.s., not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001. N, sample size (number of years). Feeding guilds: o, wading birds; ●, shorebirds; +, dabblers; □, divers.

    Salinas de Cabo de Gata   Salinas de Cerrillos  
    Before After   Before After  
N   4 7 Z 7 9 Z
Little Grebe (Tachybaptus ruficollis) 0±1 0±0 n.s. 4±6 68±41 3.3 ***
Black-necked Grebe (Podiceps nigricollis) 17±23 5±4 n.s. 2±1 70±49 3.3 ***
Little Egret (Egretta garzetta) o 17±4 33±7 2.6 ** 7±1 23±10 2.9 **
Greater Flamingo (Phoenicopterus ruber) o 1054±168 1174±187 n.s. 505±216 242±149 2.5 *
Mallard (Anas plathyrhynchos) + 23±9 11±10 n.s. 39±40 50±8 n.s.
Northern Shoveler (Anas clypeata) + 8±10 45±30 2.4 * 58±70 22±25 n.s.
Common Coot (Fulica atra) 0±0 0±0 --- 27±37 95±82 2.2 *
Black-winged Stilt (Himantopus himantopus) 56±22 48±9 n.s. 43±27 34±5 n.s.
Avocet (Recurvirostra avosetta) 387±135 397±110 n.s. 171±108 24±38 2.5 *
Ringed Plover (Charadrius hiaticula) 8±4 7±3 n.s. 31±45 9±5 n.s.
Kentish Plover (Charadrius alexandrinus) 80±30 122±42 n.s. 118±87 122±57 n.s.
Sanderling (Calidris alba) 8±5 18±18 n.s. 20±26 15±11 n.s.
Little Stint (Calidris minuta) 47±11 59±17 n.s. 98±110 33±13 n.s.
Curlew Sandpiper (Calidris ferruginea) 21±13 22±9 n.s. 84±103 4±7 3.0 **
Dunlin (Calidris alpina) 40±20 31±14 n.s. 156±148 22±13 2.9 **
Black-tailed Godwit (Limosa limosa) 191±17 136±24 2.5 * 266±157 2±2 3.3 ***
Common Redshank (Tringa totanus) 114±35 97±16 n.s. 70±35 21±8 2.4 *

On analysing the relationship between the change in numbers of the main species of shorebirds at both sites from before and after 1988 and the average length of their tarsi and bills, a significant relationship was found at CE during winter (Fig. 3; for both sites in summer and also for CG in winter, N = 10 and 8 respectively: rs > -0.7, n.s.).


Consistent changes over time in the waterbird community at both CG and CE could not be due to changes occurring in the study areas, and could be the result of regional or extraregional trends at larger scales (see Dolz and García 1992; Tucker and Heath 1994; Rose and Scott 1997; Delany et al. 1999). However, changes in the bird community occurring at CE but not at CG, are likely to be related to the changes at the former site following the abandonment of salt production. Thus, the observed increase in the species richness at CE after the cessation of salt extraction was probably due to deeper, brackish, more productive water and with a greater cover of helophytic vegetation in concrete enclaves within the abandoned saltpans. This favored the increase of bird species diversity because the original species could still persist in the remaining shallow waterbodies while other new species, feeding principally by diving, used the new deeper and brackish pools. These pools provided suitable requirements for this guild of divers (Nilsson 1972a b 1978; Hobaugh and Teer 1981; Ydenberg 1988; Owen and Black 1990; Halse et al. 1993; Castro et al. 1994; Boyd 1997).


Fig. 1. Average species richness (± SD) during the winter and summer of the waterbirds at Salinas de Cabo de Gata (CG) and Salinas de Cerrillos (CE) before and after 1988. The statistical differences (Mann-Whitney U test) between intervals are indicated: n.s., not significant; **, P < 0.01; ***, P < 0.001. For sample size see Tables 2 and 3. Fig. 2. Average values during the winter and summer of the proportional contribution (%) of the species of different feeding guilds to the total abundance of waterbirds at Salinas de Cabo de Gata (CG) and Salinas de Cerrillos (CE) before and after 1988. The statistical differences (G test) between both intervals are also indicated: ***, P < 0.001.

The decline in abundance of Greater Flamingo and certain species of shorebirds at CE following abandonment was probably due to the reduced size of shallow and salty waterbodies suitable for feeding (Finlayson et al. 1992; Pérez-Hurtado and Hortas 1993; Pérez-Hurtado et al. 1993; Barbosa 1997). However, this change did not affect all the species in the same way, and we found a relationship between the change in numbers and the lengths of the tarsus and bill in the shorebird species. This relationship is probably explained by the relationships between the depth of water in habitats used by each species and their body dimensions (i. e. species with longer bills and tarsi use deeper water; Rubio 1986; Wiens 1992; Barbosa 1993 1997; Pérez-Hurtado and Hortas 1992; Pérez-Hurtado et al. 1993). Thus, as the size of shallow and salty lagoons decreased in CE after abandonment, those larger species adapted to feed in the interior and deeper zones (Greater Flamingo, Avocet and Black-tailed Godwit) were more affected because they had proportionally less remaining habitat than the smaller species (especially Sanderling and Little Stint), which used neighboring beaches as feeding habitat (Rubio 1986; Pérez-Hurtado and Hortas 1992; Barbosa 1993 1997). This relationship was not evident during the summer, probably because of the large variance in body dimensions of individuals, owing to the presence of adults and young of various sizes.

Fig. 3. Relationship between the percentage change in abundance (%) form before to after 1988 of the main species of shorebirds at Salinas de Cerrillos during winter and the average sizes (mm) of the tarsus (Spearman rank correlation; rs = -0.7 , P < 0.05 , N = 8) and bill (Spearman rank correlation; rs = -0.9 , P < 0.01 , N = 8 ). Hh, Black-winged Stilt (Himantopus himantopus); Ra, Avocet (Recurvirostra avosetta); Cx, Kentish Plover (Charadrius alexandrinus); Cb, Sanderling (Calidris alba); Cm, Little Stint (Calidris minuta); Cp, Dunlin (Calidris alpina); Ll, Black-tailed Godwit (Limosa limosa); Tt, Common Redshank (Tringa totanus).

Cuadro de texto: Percentage change in abundance


 In some cases, the abandonment of saltpans is likely to have favourable repercussions on species richness, with the appearance of species of a high conservation importance, such as the White-headed Duck, listed as globally threatened (BirdLife International 2000). In order to improve the conditions for the Greater Flamingo and certain shorebirds following the abandonment of saltpans, the controlled reflooding of the lagoons with seawater would be advisable. Moreover, with the object of not altering the habitat of the White-headed Duck, it would also be recommended that this reflooding shouldn’t affect the pools most related to underground water supplies (deeper and brackish pools).


We are grateful to A. J. Green for his comments on earlier versions of the manuscript, to P. Kramer, J. G. Martínez, A. J. Green and J. C. Coulson for the translation into English, as well as to J. J. Soler and J. G. Martínez for their comments related to data analysis. The counting of birds was partly financed by the Consejería de Medio Ambiente (Junta de Andalucía, Spain).


Anonymous. 1992. Managing Mediterranean Wetlands and their Birds for the Year 2000 and Beyond. International Waterfowl and Wetland Research Bureau, Regione Autonoma Friuli-Venezia Giulia, Trieste.

Barbosa, A. 1993. Morphometric variation of the hindlimb of waders and its evolutionary implications. Ardeola 40: 65-75.

Barbosa, A. 1997. Las Aves Limícolas en España. Organismo Parques Nacionales (Ministerio de Medio Ambiente), Madrid.

BirdLife International. 2000. Threatened Birds of the World. Lynx Edicions, Barcelona.

Boyd, I. L. 1997. The behavioural and physiological ecology of diving. Trends in Ecology and Evolution 12: 213-217.

Bradley, P. 1997. Coastal habitats. Pages  93-123 in Habitats for birds in Europe (G. M. Tucker and M. I. Evans). BirdLife Conservation Series 6. BirdLife International, Cambridge.

Capel, J. J. 1990. Climatología de Almería. Cuadernos Monográficos 7. Instituto de Estudios Almerienses (Diputación Provincial de Almería), Almería.

Casado, S. and C. Montes. 1995. Guía de los Lagos y Humedales de España. J. M. Reyero Editor, Madrid.

Castro, H. 1993. Las Salinas de Cabo de Gata. Ecología y Dinámica Anual de las Poblaciones de Aves en las Salinas de Cabo de Gata (Almería). Colección Investigación 18. Instituto de Estudios Almerienses (Diputación Provincial de Almería), Almería.

Castro, H., J. C. Nevado, M. Paracuellos and J. M. López Martos. 1994. La Malvasía (Oxyura leucocephala) en la provincia de Almería. Evolución poblacional, nidificación y selección de hábitat. Oxyura 7: 119-134.

Delany, S., C. Reyes, E. Hubert, S. Pihl, E. Rees, L. Haanstra and A. van Strien. 1999. Results from the International Waterbird Census in the Western Palearctic and Southwest Asia, 1995 and 1996. Wetlands International Publication 54. Wetlands International, Wageningen.

Dolz, J. C. and F. J. García. 1992. Censo Estatal de Acuáticas Invernantes. Enero 1990. Instituto Nacional para la Conservación de la Naturaleza, Sociedad Española de Ornitología, Madrid.

Finlayson, C. M., G. E. Hollis and T. J. Davis. (Eds.) 1992. Managing Mediterranean Wetlands and their Birds.  IWRB Special Publication 20. International Waterfowl and Wetland Research Bureau, Slimbridge.

Guirado, J., M. Soler and R. Mendoza. 1997. Planificación de los espacios naturales protegidos en la provincia de Almería. Investigación y Gestión 2: 141-152.

Halse, S. A., M. R. Williams, R. P. Jaensch and J. A. K. Lane. 1993. Wetland characteristics and waterbird use of wetlands in South-western Australia. Wildlife Research 20: 103-126.

Hidalgo, J. 1991. Las salinas: su importancia como hábitat para los flamencos. Pages 173-178 in Reunión Técnica sobre la situación y problemática del Flamenco Rosa (Phoenicopterus ruber roseus) en el Mediterráneo Occidental y Africa Noroccidental (M. R. Pintos, S. Prieto, M. Rendon and A. R. Johnson). Agencia de Medio Ambiente (Consejería de Cultura y Medio Ambiente, Junta de Andalucía), Sevilla.

Hobaugh, W. C. and J. G. Teer. 1981. Waterfowl use characteristics of flood-prevention lakes in North-Central Texas. Journal of Wildlife Management 45: 16-26.

López Carrique, E., H. Castro, P. A. Aguilera and J. L. Martínez. 1996. Factores físico-químicos condicionantes de la diversidad biológica en zonas hipersalinas, Salinas de Cabo de Gata. (Almería). Actas del IV Simposio sobre el Agua en Andalucía 2: 427-436.

Marques, A. M. and L. Vicente. 1999. Seasonal variation of waterbird prey abundance in the Sado estuary rice fields. Ardeola 46: 231-234.

Matamala, J. J. 1996. Aguazales. El paraíso de las aves. Foco Sur 3: 42-45.

Montes, C., G. Oliver, F. Molina and J. Cobos (Eds.). 1995. Bases Ecológicas para la Restauración de Humedales en la Cuenca Mediterránea. Consejería de Medio Ambiente (Junta de Andalucía), Sevilla.

Murias, T., J. A. Cabral, R. Lopes and J. C. Marques. 1997. Low-water use of the Mondego estuary (West Portugal) by waders (Charadrii). Ardeola 44: 79-92.

Nilsson, L. 1972a. Habitat selection, food choice, and feeding habits of diving ducks in coastal waters of South Sweden during the non-breeding season. Ornis Scandinavica 3: 55-78.

Nilsson, L. 1972b. Local distribution, food choice and food consumption of diving ducks on a South Swedish lake. Oikos 23: 82-91.

Nilsson, L. 1978. Breeding waterfowl in eutrophicated lakes in South Sweden. Wildfowl 29: 101-110.

Ortega, M., J. J. Casas, P. A. Aguilera and H. Castro. 2000. Hydrochemical characterization of wetlands in a semi-arid region of eastern Andalucía (Almería, Spain): a preliminary study. Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 372-377.

Owen, M. and J. M. Black. 1990. Waterfowl Ecology. Blackie, Glasgow.

Paracuellos, M. 2001. Estructura y conservación de las comunidades de aves en humedales del sudeste ibérico. Unpublished PhD. thesis, Almería University. Almería.

Pérez-Hurtado, A. and F. Hortas. 1992. Information about the habitat use of salinas and fishponds by wintering waders in Cadiz Bay. Wader Study Group Bulletin 66: 48-53.

Pérez-Hurtado, A. and F. Hortas. 1993. Actividad trófica de limícolas invernantes en salinas y cultivos piscícolas de la Bahía de Cádiz. Doñana, Acta Vertebrata 20: 103-124.

Pérez-Hurtado, A., F. Hortas, J. Ruiz and F. Solis. 1993. Importancia de la Bahía de Cádiz para las poblaciones de limícolas invernantes e influencia de las transformaciones humanas. Ardeola 40: 133-142.

Perrins, C. M. and M. A. Ogilvie. 1998. The Complete Birds of the Western Palearctic. CD-ROM (version 1.0). Oxford University Press, Optimedia, Oxford.

Robledano, F., C. Montes and  L. Ramírez-Díaz. 1992. Relaciones Ambientales y Conservación de las Comunidades de Aves Acuáticas en la Gestión de los Humedales del Sudeste Español. Murcia University, Murcia.

Rose, P. M. and D. A. Scott. 1997. Waterfowl Population Estimates (2nd edition). Wetlands International Publication 44. Wetlands International, Wageningen.

Rubio, J. C. 1986. Estudio de la comunidad de limícolos de las Marismas del Odiel (Huelva). Oxyura 3: 97-132.

Sánchez, F. and L. Molina. 1996. Características hidroquímicas de las aguas superficiales de las salinas de Cerrillos (Almería). Actas del IV Simposio sobre el Agua en Andalucía 2: 453-462.

Siegel, S. and N. J. Castellan Jr. 1988. Nonparametric Statistics for Behavioral Sciences (2nd edition). McGraw-Hill Book Company, New York.

Tucker, G. and M. F. Heath. 1994. Birds in Europe. Their Conservation Status. Bird Conservation Series 3. BirdLife International, Cambridge.

Viada, C. 1999. Areas Importantes para las Aves en España. Monografías 5. Sociedad Española de Ornitología/BirdLife, Madrid.

Vieira, M. N. 1989. Ecologia de Salinas. Serie Monografias 2. Instituto de Zoologia “Dr. Augusto Nobre” (Porto University), Porto.

Wiens, J. A. 1992. The Ecology of Bird Communities. Volume 1: Foundations and Patterns. Cambridge University Press, Cambridge.

Ydenberg, R. C. 1988. Foraging by diving birds. Pages 1832-1842 in Proceedings of the XIX International Ornithological Congress (H. Ouellet, Ed.). National Museum of Natural Sciences, University Ottawa Press, Ottawa.

Yuma, M. 1993. Conservation and management of freshwater around Lake Biwa, through the relationship between human and aquatic fireflies. Pages 157-160 in Towards wise use of Asian wetland (H. Isozaki, M. Ando and Y. Natori, Eds.). International Lake Environment Committe Foundation, Kusatsu.